[The 4th Korea Toric Topology Winter Workshop]

** Date: ** 2016-12-29

**Speaker :** Hyun Woong Cho (KIAS)

**Abstract : **The Buchstaber invariants s(K) is deﬁned to be the maximum integer for which there is a subtorus of dimension s(K) acting freely on moment angle complex Z_K associated with a ﬁnite simplicial complex K. We can deﬁne real Buchstaber invariants sR(K) as a real version. When K is a (m−p−1) skeleton of (m−1) dimensional simplex, say K = ∆m-1m-p-1 , we can ﬁnd the values of sR(K) by solving integer linear programming. In this case, the condition for sR(K) ≥ k is given by some nice formula. However, this formula holds when a certain condition is satisﬁed. This condition come from the dual problem of integer linear programming. Additionally, I will talk about the (pre)periodicity of the real Buchstaber invariants in some sense.

**VOD : **[Android_VOD] [iPhone_VOD] [Windows_VOD]

Information Center for Mathematical Sciences KAIST

305-701 대전광역시 유성구 대학로 291 (구성동373-1)

한국과학기술원(KAIST) 수리과학정보센터

전화 042-350-8195~6 / 팩스 042-350-5722

e-mail : mathnet@mathnet.or.kr

Copyright (C) 2017. ICMS All Rights Reserved.

305-701 대전광역시 유성구 대학로 291 (구성동373-1)

한국과학기술원(KAIST) 수리과학정보센터

전화 042-350-8195~6 / 팩스 042-350-5722

e-mail : mathnet@mathnet.or.kr

Copyright (C) 2017. ICMS All Rights Reserved.