[2018 Discrete Math 세미나]

** Date: ** 2018-04-10

**Speaker :** Hong Liu (University of Warwick, Warwick, UK)

**Abstract : **Given graphs H1,…, Hk, a graph G is (H1,…, Hk)-free if there is a k-edge-colouring of G with no Hi in colour-i for all i in {1,2,…,k}. Fix a function f(n), the Ramsey-Turán function rt(n,H1,…,Hk,f(n)) is the maximum size of an n-vertex (H1,…, Hk)-free graph with independence number at most f(n). We determine rt(n,K3,Ks,δn) for s in {3,4,5} and sufficiently small δ, confirming a conjecture of Erdős and Sós from 1979. It is known that rt(n,K8,f(n)) has a phase transition at f(n)=Θ(√(n\log n)). We prove that rt(n,K8,o(√(n\log n)))=n2/4+o(n2), answering a question of Balogh, Hu and Simonovits. The proofs utilise, among others, dependent random choice and results from graph packings. Joint work with Jaehoon Kim and Younjin Kim.

**VOD : **[VIDEO] [YOUTUBE]

Information Center for Mathematical Sciences KAIST

34141 대전광역시 유성구 대학로 291 (구성동373-1)

한국과학기술원(KAIST) 수리과학정보센터

전화 042-350-8196

e-mail : mathnet@mathnet.or.kr

Copyright (C) 2018. ICMS All Rights Reserved.

34141 대전광역시 유성구 대학로 291 (구성동373-1)

한국과학기술원(KAIST) 수리과학정보센터

전화 042-350-8196

e-mail : mathnet@mathnet.or.kr

Copyright (C) 2018. ICMS All Rights Reserved.