Cookie Setting MathNet Korea

이전페이지 이동
Ramification theory and Formal orbifolds
[2018 KAIST 세미나]
Date: 2018-06-01
Speaker : Manish Kumar (Indian Statistical Institute, Bangalore)
Abstract : Formal orbifolds are normal varieties $X$ over perfect fields with a branch data $P$ which encodes compatible system of finite Galois extensions of function fields of formal neighbourhoods of points of $X$. I will introduce these objects and demonstrate how these objects can be used to study (wild) ramification theory in an organised way. In particular I will define etale site, fundamental group, etc. of formal orbifolds. I will discuss a reasonable formulation of Lefschetz theorem for fundamental group of quasi-projective varieties over fields of positive characteristic in the language of formal orbifolds. Time permitting some partial results in this direction will also be stated.
VOD : [VIDEO]  [YOUTUBE]
PC버전
Information Center for Mathematical Sciences KAIST
34141 대전광역시 유성구 대학로 291 (구성동373-1)
한국과학기술원(KAIST) 수리과학정보센터
전화 042-350-8196
e-mail : mathnet@mathnet.or.kr
Copyright (C) 2018. ICMS All Rights Reserved.