|
- Deterministic thinning of finite Poisson processes. (Angel, Omer;Soo, Terry) Proc. Amer. Math. Soc. (2011), Vol 139, Pages 707–720
- Rotor walks on general trees. (Angel, Omer) SIAM J. Discrete Math. (2011), Vol 25, Pages 423-446
- Geometric properties of Poisson matchings. Probab. Theory Related Fields (2011), Vol 150, Pages 511-527
- Stable Poisson graphs in one dimension. (Deijfen, Maria;Peres, Yuval) Electron. J. Probab. (2011), Vol 16, Pages 1238-1253
- Poisson splitting by factors. (Lyons, Russell; Soo, Terry) Ann. Probab. (2011), Vol 39, Pages 1938-1982
- Some circumstances where extra updates can delay mixing. J. Stat. Phys. (2011), Vol 145, Pages 1649-1652
- Lipschitz percolation. (Dirr, N.; Dondl, P. W.; Grimmett, G. R.;Scheutzow, M.) Electron. Commun. Probab. (2010), Vol 15, Pages 14–21
- Random subnetworks of random sorting networks. (Angel, Omer) Electron. J. Combin. (2010), Vol 17, Pages 7
- Rotor walks and Markov chains. (Propp, James) Contemp. Math. (2010), Pages 105-126
- Plaquettes, spheres, and entanglement. (Grimmett, Geoffrey R.) Electron. J. Probab. (2010), Vol 15, Pages 1415-1428
- Escape of resources in a distributed clustering process. (van den Berg, Jacob; Hilário, Marcelo R.) Electron. Commun. Probab. (2010), Vol 15, Pages 442-448
- Faster generation of shorthand universal cycles for permutations. (Ruskey, Frank; Williams, Aaron) Lecture Notes in Comput. Sci. (2010), Pages 298-307
- A percolating hard sphere model. (Cotar, Codina;Revelle, David) Random Structures Algorithms (2009), Vol 34, Pages 285–299
- Local bootstrap percolation. (Gravner, Janko) Electron. J. Probab. (2009), Vol 14, Pages 385-399
- Poisson matching. (Pemantle, Robin; Peres, Yuval; Schramm, Oded) Ann. Inst. Henri Poincaré Probab. Stat. (2009), Vol 45, Pages 266–287
- The oriented swap process. (Angel, Omer;Romik, Dan) Ann. Probab. (2009), Vol 37, Pages 1970-1998
- Tail bounds for the stable marriage of Poisson and Lebesgue. (Hoffman, Christopher; Peres, Yuval) Canad. J. Math. (2009), Vol 61, Pages 1279–1299
- A nonmeasurable set from coin flips. (Soo, Terry) Amer. Math. Monthly (2009), Vol 116, Pages 926-928
- Slow convergence in bootstrap percolation. (Gravner, Janko) Ann. Appl. Probab. (2008), Vol 18, Pages 909-928
- Partition identities and the coin exchange problem. J. Combin. Theory Ser. A (2008), Vol 115, Pages 1096-1101
- Chip-firing and rotor-routing on directed graphs. (Levine, Lionel; Mészáros, Karola; Peres, Yuval; Propp, James; Wilson, David B.) Progr. Probab. (2008), Pages 331-364
- Universal finitary codes with exponential tails. (Harvey, Nate; Peres, Yuval; Romik, Dan) Proc. Lond. Math. Soc. (3) (2007), Vol 94, Pages 475–496
- Random sorting networks. (Angel, Omer;Romik, Dan; Virág, Bálint) Adv. Math. (2007), Vol 215, Pages 839-868
- The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. (2006), Vol 11, Pages 418-433
- A stable marriage of Poisson and Lebesgue. (Hoffman, Christopher;Peres, Yuval) Ann. Probab. (2006), Vol 34, Pages 1241–1272
- Extra heads and invariant allocations. (Peres, Yuval) Ann. Probab. (2005), Vol 33, Pages 31-52
- The jammed phase of the Biham-Middleton-Levine traffic model. (Angel, Omer;Martin, James B.) Electron. Comm. Probab. (2005), Vol 10, Pages 167-178
- Integrals, partitions, and cellular automata. (Liggett, Thomas M.; Romik, Dan) Trans. Amer. Math. Soc. (2004), Vol 356, Pages 3349-3368
- Trees and matchings from point processes. (Peres, Yuval) Electron. Comm. Probab. (2003), Vol 8, Pages 17-27
- Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields (2003), Vol 125, Pages 195-224
- Entanglement and rigidity in percolation models. Progr. Probab. (2002), Pages 299-307
- Inequalities in entanglement percolation. J. Statist. Phys. (2002), Vol 109, Pages 317-323
- Knotted paths in percolation. J. Statist. Phys. (2002), Vol 109, Pages 325-330
- Rigidity percolation and boundary conditions. Ann. Appl. Probab. (2001), Vol 11, Pages 1063-1078
- How to find an extra head: optimal random shifts of Bernoulli and Poisson random fields. (Liggett, Thomas M.) Ann. Probab. (2001), Vol 29, Pages 1405-1425
- Existence of a phase transition for entanglement percolation. Math. Proc. Cambridge Philos. Soc. (2000), Vol 129, Pages 231-251
- Entanglement in percolation. (Grimmett, Geoffrey R.) Proc. London Math. Soc. (3) (2000), Vol 81, Pages 485-512
- Existence and uniqueness of infinite components in generic rigidity percolation. Ann. Appl. Probab. (1998), Vol 8, Pages 944–973
|