이전페이지 이동
   GowriSankaran, K. N. (GowriSankaran, K. N. Professor)
    McGill University
Total: 44
  • Minimal fine limits on trees. (Singman D) Illinois Journal of Mathematics. (2004), Vol 48Pages 359-389 

  • Tangential limits of potentials on homogenous trees. (Singman D) Potential Analysis. (2003), Vol 18Pages 79-96 

  • Polyharmonic Functions on Trees. (Colonna F; Singman D; Cohen J) American Journal of Mathematics (2002), 

  • Polyharmonic Functions on Trees. (Colonna F, Singman D, Cohen J,) American Journal of Mathematics (2002), 

  • A projection theorem and tangential boundary behavior of potentials. (Singman D) Proc. Amer. Math. Soc. (2001), Vol 129Pages 397-405 

  • A projection theorem and tangential behaviour of potentials. (Singman D) Proceedings of the American Mathematical Society (2001), Vol 129Pages 397-406 

  • A projection theorem and tangential boundary behavior of potentials. (Singman D) Proc. Amer. Math. Soc. (2001), Vol 129Pages 397-405 

  • A projection theorem and tangential behaviour of potentials. (Singman D) Proceedings of the American Mathematical Society. (2001), Vol 129Pages 397-406 

  • Minimal fine limits for a class of potentials (Singman D) Potential Analysis (2000), Vol 13Pages 103-114 

  • Superharmonic tangential approximation on long islands. (Nersessian AH) Bull. London Math. Soc. (2000), Vol 32Pages 47-53 

  • A projection theorem and tangential boundary behaviour of potentials. (Singman D) Proceedings of the American Mathematical Society (2000), Vol 129Pages 397-405 

  • Superharmonic tangential approximation on long islands. (Nersessian AH) Bull. London Math. Soc (2000), Vol 32Pages 47-53 

  • Minimal fine limits for a class of potentials (Singman D) Potential Analysis (2000), Vol 13Pages 103-114 

  • A projection theorem and tangential boundary behaviour of potentials (Singman D) Proceedings of the American Mathematical Society (2000), Vol 129Pages 397-405 

  • Thin sets and boundary behavior of solutions of the Helmholtz equation. (Singman D) Potential Anal. (1998), Vol 9Pages 383-398 

  • Thin sets and boundary behavior of solutions of the Helmholtz equation. (Singman D) Potential Anal. (1998), Vol 9Pages 383-398 

  • A generalized Littlewood theorem for Weinstein potentials on a halfspace. (Singman D) Illinois J. Math. (1997), Vol 41Pages 630-647 

  • A generalized Littlewood theorem for Weinstein potentials on a halfspace. (Singman D) Illinois J. Math (1997), Vol 41Pages 630-647 

  • Global approximation in harmonic spaces. (Gardiner SJ; Goldstein M) Proc. Amer. Math. Soc (1994), Vol 122Pages 213-221 

  • Tangential approximation in harmonic spaces. (Gardiner SJ; Goldstein M) Indiana Univ. Math. J (1994), Vol 43Pages 1003-1012 

  • Tangential approximation in harmonic spaces. (Gardiner SJ; Goldstein M) Indiana Univ. Math. (1994), Vol 43Pages 1003-1012 

  • Global approximation in harmonic spaces. (Gardiner SJ; Goldstein M) Proc. Amer. Math. Soc (1994), Vol 122Pages 213-221 

  • Fatou-Doob limits and the best filters. (1994), Vol 430Pages 233-236 

  • Compact multipolar sets. (Jesuraj R) Canad. Math. Bull (1992), Vol 35Pages 81-83 

  • Polydiscs and nontangential limits. Proc. Amer. Math. Soc (1992), Vol 115Pages 977-984 

  • Iterated fine limits. Proc. Amer. Math. Soc (1990), Vol 108Pages 157-162 

  • Negligible sets and good functions on polydiscs. Ann. Inst. Fourier (1979), Vol 29Pages 211-222 

  • Multiply superharmonic functions. Ann. Inst. Fourier (1975), Vol 25Pages 235-244 

  • Iterated nontangential limits Trans. Amer. Math. Soc (1975), Vol 212Pages 401-402 

  • Measurability of lattice operations in a cone. LectureNotesinMath (1974), Vol 399Pages 230-234 

  • Lusin and Suslin topologies on a set. Proc. Amer. Math. Soc (1974), Vol 43Pages 326-330 

  • Measurability of lattice operations in a cone. Proc. Amer. Math. Soc (1973), Vol 41Pages 237-240 

  • Integral representation for a class of multiply superharmonic functions. Ann. Inst. Fourier (1973), Vol 23Pages 105-143 

  • Measurability of functions in product spaces. Proc. Amer. Math. Soc (1972), Vol 31Pages 485-488 

  • Iterated fine limits and iterated nontangential limits. Trans. Amer. Math. Soc (1972), Vol 173Pages 71-92 

  • On a problem of Doob concerning multiply superharmonic functions. Nagoya Math. J (1970), Vol 39Pages 127-132 

  • On minimal positive harmonic functions. et J. Deny (1968), Vol 18Pages 14 

  • Multiply harmonic functions. Nagoya Math. J. (1966), Vol 28Pages 27-48 

  • Limites fines et fonctions doublement harmoniques. C. R. Acad. Sci. Paris S'er. (1966), Vol 262Pages 388-390 

  • Fatou-Nai m-Doob limit theorems in the axiomatic system of Brelot. Ann. Inst. Fourier (1966), Vol 16Pages 455-467 

  • Extreme harmonic functions and boundary value problems. II. Math. Z (1966), Vol 94Pages 256-270 

  • Limites fines et probl`eme de Dirichlet en th'eorie axiomatique des fonctions harmoniques. C. R. Acad. Sci. Paris. (1963), Vol 256Pages 357-358 

  • Extreme harmonic functions and boundary value problems. Ann. Inst. Fourier (1963), Vol 13Pages 307-356 

  • Limites fines ```a la fronti`ere`` dans la th'eorie axiomatique du potentiel de M. Brelot. C. R. Acad. Sci. Paris. (1962), Vol 255Pages 450-451 

 
Information Center for Mathematical Sciences KAIST
34141 대전광역시 유성구 대학로 291 (구성동373-1)
한국과학기술원(KAIST) 수리과학정보센터
전화 042-350-8196
e-mail : mathnet@mathnet.or.kr
Copyright (C) 2018. ICMS All Rights Reserved.