이전페이지 이동
   Jakobson, Dmitry (Jakobson, Dmitry Professor)
    McGill University
Total: 25
  • On the Spectrum of geometric operators on Kahler manifolds. (Strohmaier A; Zelditch S) Journal of Modern Dynamics (2009), Pages 701-718 

  • On the spectrum of geometric operators on Kahler manifolds. (Strohmaier A; Zelditch S) J. Mod. Dyn (2008), Vol 2Pages 701-718 

  • A lower bound for the remainder in Weyl's law on negatively curved surfaces. (Polterovich I; Toth JA) Int. Math. Res. Not. IMRN (2008), 

  • On nodal sets and nodal domains on $Ssp 2$ and $Bbb Rsp 2$. (Eremenko A; Nadirashvili N) Ann. Inst. Fourier (2007), Vol 57Pages 2345-2360 

  • High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. (Strohmaier A) Comm. Math. Phys (2007), Vol 270Pages 813-833 

  • High-energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows. (Strohmaier A) Electron. Res. Announc. Amer. Math. Soc (2006), Vol 12Pages 87-94 

  • Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond (Levitin M; Nadirashvili N; Polterovich I) Jour. of Computational and Applied Math (2006), Vol 194Pages 141-155 

  • Extremal metric for the first eigenvalue on a Klein bottle (Nadirashvili N; Polterovich I) Canadian Jour. Math (2006), Vol 58Pages 381-400 

  • Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. (Polterovich I) Electron. Res. Announc. Amer. Math. Soc (2005), Vol 11Pages 71-77 

  • How large can the first eigenvalue be on a surface of genus two? (Nigam N; Polterovich I) Int. Math. Research Notices. (2005), Vol 63Pages 3967-3985 

  • Estimates from below for the spectral function and for the remainder in local Weyl's law. (Polterovich I) Electronic Research Announcements of the AMS. (2005), Vol 11Pages 71-77 

  • A law of large numbers for the zeroes of Heine-Stieltjes polynomials. (Bourget A; Min-Oo M; Toth J) Letters in Mathematical Physics. (2003), Vol 64Pages 105-118 

  • Quasi-symmetry of L^p norms of eigenfunctions. (Nadirashvili N) Communications in Analysis and Geometry (2002), Vol 10Pages 397-408 

  • Extremal metrics on graphs I. (Rivin I) Forum Math. (2002), Vol 14Pages 147-163 

  • Geometric properties of eigenfunctions (Toth J) Russian Mathematical Surveys (2001), Vol 56Pages 1085-1106 

  • Eigenfunctions with few critical points. (Nadirashvili N) Journal of Differential Geometry (1999), Vol 53Pages 177-182 

  • Eigenvalue spacings for regular graphs. (Miller SD; Rivin I; Rudnick Z) Emerging applications of number theory (1999), Vol 109Pages 317-327 

  • Classical limits of eigenfunctions for some completely integrable systems. (Zelditch S) IMA Volumes in Mathematics and its Applications (1999), Vol 109Pages 329-355 

  • Spectra of elements in the group ring of SU(2) (Gamburd A; Sarnak P) Jour. of Eur. Math. Soc. (1999), Vol 1Pages 51-85 

  • Level spacings for regular graphs. (Miller S; Rivin I; Rudnick Z) IMA Volumes in Mathematics and its Applications (1999), Vol 109Pages 317-329 

  • Quantum limits on flat tori Annals of Mathematics (1997), Vol 145Pages 235-266 

  • Equidistribution of cusp forms on PSL(2,Z)PSL(2,R) (1997), Vol 47Pages 967-984 

  • On quantum limits on flat tori. Electron. Res. Announc. Amer. Math. Soc (1995), Vol 1Pages 80-86 

  • Quantum Unique Ergodicity for Eisenstein Series on PSL(2,Z)PSL(2,R) (1994), Vol 44Pages 1477-1504 

  • On The Dynamics Of Chains. (Maddocks J) SIAM J. of Appl. Math (1992), Vol 52Pages 1563-1583 

 
Information Center for Mathematical Sciences KAIST
34141 대전광역시 유성구 대학로 291 (구성동373-1)
한국과학기술원(KAIST) 수리과학정보센터
전화 042-350-8196
e-mail : mathnet@mathnet.or.kr
Copyright (C) 2018. ICMS All Rights Reserved.