이전페이지 이동
2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  1995  1991  1990  1988  1974  1970   - 총 10630 개 -
  • 2004 년도 - 580 개-
    2004년 5-6월 가막만의 수괴분포 및 조류특성 - 이문옥, 김병국, 김종규 (여수대학교 해양공학과)

    A Review of Dark Energy - Chung Wook Kim (Korea Institute for Advanced Study)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Complex Analysis - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - First-Order Partial Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Irregular Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Method of Stationary Phase - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Regular Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Second-Order Partial Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Separation of Variables - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The Differential Operator - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The Laplace Method - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The WKB Approximation - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Turning Point - Hung Cheng (MIT)

    Advanced Calculus for Engineers - Analytic Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Boundary Value Problems for Nonhomogeneous PDEs - John Bush (MIT)

    Advanced Calculus for Engineers - Branch Points and Branch Cuts - John Bush (MIT)

    Advanced Calculus for Engineers - Cauchy's Formula, Properties of Analytic Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Complete Fourier Series - John Bush (MIT)

    Advanced Calculus for Engineers - Complex Integrals - John Bush (MIT)

    Advanced Calculus for Engineers - Differential Equations Satisfied by Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Eigenvalues, Eigenfunctions, Orthogonality of Eigenfunctions - John Bush (MIT)

    Advanced Calculus for Engineers - Elementary Complex Functions, Part 1 - John Bush (MIT)

    Advanced Calculus for Engineers - Elementary Complex Functions, Part 2 - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case I - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case II - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case III - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case IV - John Bush (MIT)

    Advanced Calculus for Engineers - Fourier Series - John Bush (MIT)

    Advanced Calculus for Engineers - Fourier Sine and Cosine Series - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method (cont.) and a particular type of ODE - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method - Examples - John Bush (MIT)

    Advanced Calculus for Engineers - Introduction to Boundary-Value Problems - John Bush (MIT)

    Advanced Calculus for Engineers - Laurent Series (cont.) - John Bush (MIT)

    Advanced Calculus for Engineers - Modified Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Number Systems and Algebra of Complex Numbers - John Bush (MIT)

    Advanced Calculus for Engineers - Ordinary Differential Equations - John Bush (MIT)

    Advanced Calculus for Engineers - Properties of Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Properties of Laurent Series, Singularities - John Bush (MIT)

    Advanced Calculus for Engineers - Residue Theorem - John Bush (MIT)

    Advanced Calculus for Engineers - Review of Boundary Value Problems for Nonhomogeneous PDEs - John Bush (MIT)

    Advanced Calculus for Engineers - Series and Convergence - John Bush (MIT)

    Advanced Calculus for Engineers - Singular Points of Linear Second-order ODEs - John Bush (MIT)

    Advanced Calculus for Engineers - Singularities (cont.) - John Bush (MIT)

    Advanced Calculus for Engineers - Sturm-Liouville Problem - John Bush (MIT)

    Advanced Calculus for Engineers - Taylor Series, Laurent Series - John Bush (MIT)

    Advanced Calculus for Engineers - Theorems for Contour Integration - John Bush (MIT)

    Algebraic Topology - Chapter 2 - Allen Hatcher (Cornell University)

    Baryonic Signature in the Large-scale Clustering of SDSS Quasars - Kazuhiro Yahata (Univ. of Tokyo)

    Comparisons of extracellular products (ECPs) from Streptococcus iniae isolates using 20dimensional gel electrophoresis - 신기욱 (경상대학교)

    Complex Variables 1 Preface - Robert B. Ash (University of Illinois)

    Complex Variables 10 Solutions - Robert B. Ash (University of Illinois)

    Complex Variables 11 List of Symbols - Robert B. Ash (University of Illinois)

    Complex Variables 12 Index - Robert B. Ash (University of Illinois)

    Complex Variables 2 Table of Contents - Robert B. Ash (University of Illinois)

    Complex Variables 3 Chapter 1 Introduction - Robert B. Ash (University of Illinois)

    Complex Variables 4 Chapter 2 The Elementary Theory - Robert B. Ash (University of Illinois)

    Complex Variables 5 Chapter 3 The General Cauchy Theorem - Robert B. Ash (University of Illinois)

    Complex Variables 6 Chapter 4 Applications of the Cauchy Theory - Robert B. Ash (University of Illinois)

    Complex Variables 7 Chapter 5 Families of Analytic Functions - Robert B. Ash (University of Illinois)

    Complex Variables 8 Chapter 6 Factorization of Analytic Functions - Robert B. Ash (University of Illinois)

    Complex Variables 9 Chapter 7 The Prime Number Theorem - Robert B. Ash (University of Illinois)

    Continuous Time Finance - Lecture 1 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 10 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 2 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 3 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 4 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 5 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 6 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 7 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 8 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 9 - Robert V. Kohn (Courant Institute, New York University)

    Differential Analysis - Cone Support and Wavefront Set - Richard Melrose (MIT)

    Differential Analysis - Continuous Functions - Richard Melrose (MIT)

    Differential Analysis - Convolution and Density - Richard Melrose (MIT)

    Differential Analysis - Differential Operators - Richard Melrose (MIT)

    Differential Analysis - Fourier Inversion - Richard Melrose (MIT)

    Differential Analysis - Hilbert Space - Richard Melrose (MIT)

    Differential Analysis - Homogeneous Distributions - Richard Melrose (MIT)

    Differential Analysis - Integration - Richard Melrose (MIT)

    Differential Analysis - Measureability of Functions - Richard Melrose (MIT)

    Differential Analysis - Measures and sigma-algebras - Richard Melrose (MIT)

    Differential Analysis - Problems - Richard Melrose (MIT)

    Differential Analysis - References - Richard Melrose (MIT)

    Differential Analysis - Sobolev Embedding - Richard Melrose (MIT)

    Differential Analysis - Solutions - Richard Melrose (MIT)

    Differential Analysis - Spectral Theorem - Richard Melrose (MIT)

    Differential Analysis - Tempered Distributions - Richard Melrose (MIT)

    Differential Analysis - Test Functions - Richard Melrose (MIT)

    Differential Analysis-01.Examples of Harmonic Functions - Jeff Viaclovsky (MIT)

    Differential Analysis-02.Harmonic Functions and Mean Value Theorem - Jeff Viaclovsky (MIT)

    Differential Analysis-03.Definition of Green's Function for General Domains - Jeff Viaclovsky (MIT)

    Differential Analysis-04.Weak Solutions - Jeff Viaclovsky (MIT)

    Differential Analysis-05.A Removable Singularity Theorem - Jeff Viaclovsky (MIT)

    Differential Analysis-06.Kelvin Transform I: Direct Computation - Jeff Viaclovsky (MIT)

    Differential Analysis-07.Weak Maximum Princple for Linear Elliptic Operators - Jeff Viaclovsky (MIT)

    Differential Analysis-08.Quasilinear Equations (Minimal Surface Equation) - Jeff Viaclovsky (MIT)

    Differential Analysis-09.If Delta u in L^{infty}, then u in C^{1,alpha}, any 0 < alpha < 1 - Jeff Viaclovsky (MIT)

    Differential Analysis-10.If Delta u in C^{alpha}, alpha > 0, then u in C^{2} - Jeff Viaclovsky (MIT)

    Differential Analysis-11.Interior C^{2,alpha} Estimate for Newtonian Potential - Jeff Viaclovsky (MIT)

    Differential Analysis-12.Schwartz Reflection Reviewed - Jeff Viaclovsky (MIT)

    Differential Analysis-13.Global C^{2,alpha} Solution of Poisson's Equation Delta u = f in C^{alpha}, for C^{2,alpha} Boundary Values in Balls - Jeff Viaclovsky (MIT)

    Differential Analysis-14.Interior Schauder Estimate - Jeff Viaclovsky (MIT)

    Differential Analysis-15.Global Schauder Estimate - Jeff Viaclovsky (MIT)

    Differential Analysis-16.Continuity Method - Jeff Viaclovsky (MIT)

    Differential Analysis-17.Elliptic Regularity: If f and Coefficients of L in C^{k,alpha}, Lu = f, then u in C^{k+2,alpha} - Jeff Viaclovsky (MIT)

    Differential Analysis-18.C^{k,alpha} Regularity up to the Boundary - Jeff Viaclovsky (MIT)

    Differential Analysis-19.Sobolev Imbedding Theorem p < n - Jeff Viaclovsky (MIT)

    Differential Analysis-20.Sobolev Imbedding for p > n, H?lder Continuity - Jeff Viaclovsky (MIT)

    Differential Analysis-21.Characterization of W^{1,p} in Terms of Difference Quotients (cont.) - Jeff Viaclovsky (MIT)

    Differential Analysis-22.Interior W^{k+2,2} Estimates for Solutions of Lu = f in W^{k,2} - Jeff Viaclovsky (MIT)

    Differential Analysis-23.Weak L^2 Maximum Principle - Jeff Viaclovsky (MIT)

    Differential Analysis-24.Cube Decomposition - Jeff Viaclovsky (MIT)

    Differential Analysis-25.W^{2,p} Estimate for N.P., 1 < p < infty - Jeff Viaclovsky (MIT)

    Edwardsiella tarda 감염에 대한 계란 난황항체의 효과 - 김영대 (여수대학교 수산생명의학과)

    Elliptic functions - Veeravalli Varadarajan (UCLA)

    Error-correcting codes, finite fields, algebraic curves - Lecture 1 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 10 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 11 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 12 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 13 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 14 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 15 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 16 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 17 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 18 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 19 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 2 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 20 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 21 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 22 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 23 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 24 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 25 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 3 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 4 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 5 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 6 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 7 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 8 - Paul Garrett (University of Minnesota)

    Fluid dynamics II - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 1 - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 2 - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 3 - Stephen Childress (New York University)

    Formation of Galaxies in Clusters - Myung Gyoon Lee (Seoul National Univ.)

    Fourier Analysis - Approximation - Richard Melrose (MIT)

    Fourier Analysis - Bessel''s Inequality - Richard Melrose (MIT)

    Fourier Analysis - Bounded Operators - Richard Melrose (MIT)

    Fourier Analysis - Chebyshev''s Inequality - Richard Melrose (MIT)

    Fourier Analysis - Compact Operators - Richard Melrose (MIT)

    Fourier Analysis - Completeness - Richard Melrose (MIT)

    Fourier Analysis - Completeness of Eigenfunctions - Richard Melrose (MIT)

    Fourier Analysis - Convergence of Fourier Series - Richard Melrose (MIT)

    Fourier Analysis - Fatou''s Lemma - Richard Melrose (MIT)

    Fourier Analysis - Fourier Transform - Richard Melrose (MIT)

    Fourier Analysis - Harmonic Oscillator - Richard Melrose (MIT)

    Fourier Analysis - Hilbert-Schmidt Operators - Richard Melrose (MIT)

    Fourier Analysis - Integrable Functions - Richard Melrose (MIT)

    Fourier Analysis - Introduction - Richard Melrose (MIT)

    Fourier Analysis - Law of Large Numbers - Richard Melrose (MIT)

    Fourier Analysis - Linearity - Richard Melrose (MIT)

    Fourier Analysis - Measurable Functions - Richard Melrose (MIT)

    Fourier Analysis - Measures - Richard Melrose (MIT)

    Fourier Analysis - Riesz Representation Theorem - Richard Melrose (MIT)

    Fourier Analysis - Schwartz Functions - Richard Melrose (MIT)

    Fourier Analysis - Sobolev Spaces - Richard Melrose (MIT)

    Fourier Analysis - Spectral Theorem - Richard Melrose (MIT)

    Fourier Analysis - The Integral - Richard Melrose (MIT)

    Fourier Analysis - Wave Equation - Richard Melrose (MIT)

    Galaxies Properties in the Sloan Digital Sky Survey - Mariangela Bernardi (Carnegie Mellon University)

    Geometric Aspects of the Moduli Space of Riemann Surfaces - Kefeng Liu (UCLA)

    Geometric Modelling - Lecture 1 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 10 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 11 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 12 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 13 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 14 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 15 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 16 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 17 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 18 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 19 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 20 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 21 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 22, 23 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 24 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 25 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 26 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 27 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 28 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 29 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 29_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 3 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 30 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 31 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 32 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 33 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 33_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 34 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 34_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 35 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 35_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 36 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 36_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 37 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 38 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 4 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 5 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 6 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 7 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 8 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 9 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometry of Manifolds 1 Manifolds: Definitions and Examples (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 10-11 Sard's Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 12 Stratified Spaces (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 13 Fiber Bundles (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 14 Whitney's Embedding Theorem, Medium Version (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 15 A Brief Introduction to Linear Analysis: Basic Definitions; A Brief Introduction to Linear Analysis: Compact Operators (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 16-17 A Brief Introduction to Linear Analysis: Fredholm Operators (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 18-19 Smale's Sard Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 2 Smooth Maps and the Notion of Equivalence; Standard Pathologies (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 20 Parametric Transversality (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 21-22 The Strong Whitney Embedding Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 23-28 Morse Theory (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 29 Canonical Forms: The Lie Derivative (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 3 The Derivative of a Map between Vector Spaces (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 30 Canonical Forms: The Frobenious Integrability Theorem; Canonical Forms: Foliations; Characterizing a Codimension One Foliation in Terms of its Normal Vector; The Holonomy of C - Tomasz Mrowka (MIT)

    Geometry of Manifolds 31 Differential Forms and de Rham's Theorem: The Exterior Algebra (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 32 Differential Forms and de Rham's Theorem: The Poincar? Lemma and Homotopy Invariance of the de Rham Cohomology; Cech Cohomology (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 33 Refinement The Acyclicity of the Sheaf of p-forms (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 34 The Poincar? Lemma Implies the Equality of Cech Cohomology and de Rham Cohomology (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 35 The Immersion Theorem of Smale (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 4 Inverse and Implicit Function Theorems (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 5 More Examples (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 6 Vector Bundles and the Differential: New Vector Bundles from Old (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 7 Vector Bundles and the Differential: The Tangent Bundle (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 8 Connections; Partitions of Unity; The Grassmanian is Universal (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 9 The Embedding Manifolds in RN (PDF) - Tomasz Mrowka (MIT)

    Gravitational Lensing with SDSS - Myeong-Gu Park (Kyungpook National Univ.)

    Highligts of Recent SDSS Sciences of JPG - Yasushi Suto (Univ. of Tokyo)

    Honors Differential Equations - Approximate Numerical Solutions - Jason Starr (MIT)

    Honors Differential Equations - Autonomous Systems and Interacting Species Models - Jason Starr (MIT)

    Honors Differential Equations - Compartment Models and Introduction to Linear Algebra - Jason Starr (MIT)

    Honors Differential Equations - Conservative Systems and Lyapunov Functions - Jason Starr (MIT)

    Honors Differential Equations - Convolution - Jason Starr (MIT)

    Honors Differential Equations - Eigenvalues, Eigenvectors and Eigenspaces - Jason Starr (MIT)

    Honors Differential Equations - Existence and Uniqueness of Solutions: Picard Iterates - Jason Starr (MIT)

    Honors Differential Equations - Existence and Uniqueness of Solutions: Uniqueness - Jason Starr (MIT)

    Honors Differential Equations - Extension of Solutions - Jason Starr (MIT)

    Honors Differential Equations - Extra Topics - Jason Starr (MIT)

    Honors Differential Equations - Extra Topics - Jason Starr (MIT)

    Honors Differential Equations - Fourier Trigonometric Series - Jason Starr (MIT)

    Honors Differential Equations - Homogeneous 2nd Order Linear ODE's with Constant Coefficients - Jason Starr (MIT)

    Honors Differential Equations - Homogeneous Linear Systems: Real Eigenvalues Case - Jason Starr (MIT)

    Honors Differential Equations - Inhomogeneous 2nd Order Linear ODE's - Jason Starr (MIT)

    Honors Differential Equations - Linear Differential Equations - Jason Starr (MIT)

    Honors Differential Equations - Modeling and Terminology - Jason Starr (MIT)

    Honors Differential Equations - Properties of the Transform - Jason Starr (MIT)

    Honors Differential Equations - Qualitative Analysis - Jason Starr (MIT)

    Honors Differential Equations - Some Instructions on Plotting Functions in MATLAB - Jason Starr (MIT)

    Honors Differential Equations - Stability of Linear and Nonlinear Autonomous Systems - Jason Starr (MIT)

    Honors Differential Equations - Supplementary Notes on Jordan Normal Form - Jason Starr (MIT)

    Honors Differential Equations - The Dirac Delta Function - Jason Starr (MIT)

    Honors Differential Equations - The Fundamental Theorem - Jason Starr (MIT)

    Honors Differential Equations - The Laplace Transform: Solving IVP’s - Jason Starr (MIT)

    Honors Differential Equations - Theory of 2nd Order Linear and Nonlinear ODE's - Jason Starr (MIT)

    Honors Differential Equations - Theory of General Linear Systems of ODE's - Jason Starr (MIT)

    Hydrodynamic Stability - Robert Krasny (University of Michigan)

    Identificaiton and EST analysis of sucuticociliate isolated from Japanese flounder paralichthys olivaceus - Shin Ichi Kitamura (여수대학교)

    Identificaiton and EST analysis of sucuticociliate isolated from Japanese flounder paralichthys olivaceus - 안경진 (국립수산과학원 생명공학연구단)

    Intersection Theory - Lecture 1 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 10 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 11 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 12 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 13 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 14 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 15 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 16 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 17 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 18 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 19 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 2 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 3 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 4 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 6 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 7 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 8 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 9 - Ravi Vakil (Stanford University)

    Intrinsic Properties of Quasars: Testing the Standard Paradigm - David Turnshek (Univ. of Pittsburgh)

    Introduction to Computational Molecular Biology 1 Motifs and Median Strings - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 10 Suffix Arrays and BWTs - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 11 BLAST - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 12 Trees - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 13 Hidden Markov Models I - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 14 Hidden Markov Models II - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 15 Gibbs Sampling - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 16 Random Projections - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 17 Another Probabilistic Method to Phase Haplotype Data - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 18 Problem Set 1 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 19 Problem Set 2 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 2 Global Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 20 Problem Set 3 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 21 Problem Set 4 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 22 Problem Set 5 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 23 Problem Set 6 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 24 Burrows-Wheeler Transforms in Linear Time and Linear Bits - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 25 Sampling Good Motifs with Markov Chains - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 26 Robust Clustering Techniques in Bioinformatic - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 3 Local Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 4 Spliced Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 5 More Efficient Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 6 Peptide Graphs - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 7 Exact Pattern Matching - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 8 Suffix Trees - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 9 A Review of Suffix Trees - Ross Lippert (MIT)

    Introduction to Lie Groups 1 Preface - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 2 Chapter I: Elementary Differential Geometry - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 3 Chapter II: Lie Groups and Lie Algebras 1 - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 4 Chapter II: Lie Groups and Lie Algebras 2 - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 5 Chapter I: Exercises and Further Results - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 6 Chapter II: Exercises and Further Results - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 7 Solutions to Exercises - Sigurdur Helgason (MIT)

    Introduction to Numerical Methods - Bisection, Divide and Conquer - Plamen Koev (MIT)

    Introduction to Numerical Methods - Cholesky Factorization - Plamen Koev (MIT)

    Introduction to Numerical Methods - Conditioning and Stability - Plamen Koev (MIT)

    Introduction to Numerical Methods - Conjugate Gradients - Plamen Koev (MIT)

    Introduction to Numerical Methods - Eigenvalue Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Floating Point Arithmetic - Plamen Koev (MIT)

    Introduction to Numerical Methods - Gaussian Elimination - Plamen Koev (MIT)

    Introduction to Numerical Methods - Givens Rotations and Householder Reflections - Plamen Koev (MIT)

    Introduction to Numerical Methods - Introduction, Examples, Matrix-Vector and Matrix-Matrix products - Plamen Koev (MIT)

    Introduction to Numerical Methods - Iterative Algorithms, Arnoldi - Plamen Koev (MIT)

    Introduction to Numerical Methods - Lanczos Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - Lanczos, GMRES - Plamen Koev (MIT)

    Introduction to Numerical Methods - Least Squares Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Orthogonal Matrices, Norms of Matrices - Plamen Koev (MIT)

    Introduction to Numerical Methods - QR Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - QR Factorization - Plamen Koev (MIT)

    Introduction to Numerical Methods - Runge Kutta Methods - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Ordinary Differential Equations - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Stiff ODEs - I - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Stiff ODEs - II - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of Givens Rotations and Backward Substitution - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of Least Squares Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of the QR Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - The Singular Value Decomposition - Plamen Koev (MIT)

    Introduction to Partial Differential Equations - (Generalized) Fourier Series - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - (Generalized) Fourier Series (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Convergence of Fourier Series and L^2 Theory - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Distributions (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - First-order Linear PDE''s , PDE''s from Physics - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Heat and Wave Equations in Half Space and in Intervals - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous PDE''s - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous PDE''s (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous Problems - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Initial and Boundary Values Problems - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Introduction and Basic Facts about PDE''s - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Laplace''s Equation and Special Domains - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Poisson Formula - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Solution of the Heat and Wave Equations in R^n via the Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Spectral Methods - Separation of Variables - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Spectral Methods - Separation of Variables (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Tempered Distributions, Convolutions, Solutions of PDE''s by Fourier Transform (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Heat/Diffusion Equation - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Heat/Diffusion Equation (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Inversion Formula for the Fourier Transform, Tempered Distributions, Convolutions, Solutions of PDE''s by Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Wave Equation - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Types of PDE''s Distributions - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Topology - Connected Spaces, Compact Spaces - James Munkres (MIT)

    Introduction to Topology - Countability and Separation Axioms - James Munkres (MIT)

    Introduction to Topology - Imbedding in Euclidean Space - James Munkres (MIT)

    Introduction to Topology - Imbedding in Euclidean Space (cont.) - James Munkres (MIT)

    Introduction to Topology - Logic and Foundations - James Munkres (MIT)

    Introduction to Topology - Tietze Theorem - James Munkres (MIT)

    Introduction to Topology - Tietze Theorem (cont.) - James Munkres (MIT)

    Introduction to Topology - Tychonoff Theorem, Stone-Cech Compactification - James Munkres (MIT)

    Introduction to Topology - Urysohn Lemma, Metrization - James Munkres (MIT)

    Introduction to Topology - Urysohn Lemma, Metrization (cont.) - James Munkres (MIT)

    Introduction to Topology - Well-ordered Sets, Maximum Principle - James Munkres (MIT)

    Large Scale Structure in the SDSS - Ravi Sheth (Pittsburg Univ. /Univ. of Pennsylvania)

    Lecture 3:Forced Oscillations with Damping, Destructive Resonance - Walter Lewin ()

    Lecture Notes 10 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 11 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 12 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 13 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 14 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 15 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 16 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 2 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 3 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 4 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 7 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 8 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 9 - Mohammad Ghomi (Georgia Tech)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra1 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra10 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra11 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra2 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra3 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra4 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra5 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra6 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra7 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra8 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra9 - Edwin H. Connell (University of Miami)

    Minimal atomic S-modules and S-algebras - Andrew Baker (University of Glasgow)

    Nonlinear Programming - 0 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 1 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 10 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 11 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 12 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 13 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 14 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 2 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 3 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 4 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 5 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 6 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 7 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 8 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 9 - Katta G. Murty (University of Michigan)

    PAST: Cosmology Using the Epoch of Reionization. - Ue-Li Pen (Canadian Institute for Theoretical Astrophysics)

    PDE in Finance - Lecture 1 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 2 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 3 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 4 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 5 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 6 - S. R. Srinivasa Varadhan (New York University)

    Probing the Universe with Quasar Absorption Lines - David Turnshek (Univ. of Pittsburgh)

    Random Matrix Theory and Its Applications 1 The lecture notes below are a selection of handouts that were presented and analyzed in class. Jacobian Code - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 10 Slides 2 - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 2 Why are Random Matrices Cool? - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 3 Class Handout (Chapter 8) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 4 Class Handout Addendum (Handbook of Matrix Jacobians) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 5 Class Handout (Chapter 9) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 6 Professor Edelman's Thesis with some of the Eigenvalue Density Formulas - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 7 Multivariate Orthogonal Polynomials Handout - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 8 Report - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 9 Slides 1 - Alan Edelman, Moe Win (MIT)

    Semigroups and affine toric varieties - Mircea Mustata (University of Michigan)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - A Useful Homomorphism - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - A Useful Homomorphism - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Congruent Numbers and Elliptic Curves I: Koblitz - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Congruent Numbers and Elliptic Curves II: Koblitz - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Construction of an Auxiliary Polynomial - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Curves in the Projective Plane - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Examples - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Examples - Part 3 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Explicit Formulas for the Group Law - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Factorization using Elliptic Curves - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Factorization using Elliptic Curves - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Gauss''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Gauss''s Theorem - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Geometry of Cubic Curves - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Height of 2P - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Height of P + P_0 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Heights and Descent - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Integer Points on Cubics, Taxicabs - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Mordell''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Mordell''s Theorem - Part 2, Examples - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order have Integer Coordinates - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order have Integer Coordinates - Part 3, The Nagell-Lutz Theorem - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order Revisited - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Order Two and Three - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Proof of the DAT, Further Developments - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Rational Points on Conics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Rational Points over Finite Fields - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Real and Complex Points on Cubics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Singular Cubics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Taxicabs - Part 2, Thue''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Auxiliary Polynomial Does Not Vanish - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Auxiliary Polynomial is Small - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Discriminant, Points of Finite Order have Integer Coordinates - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Projective Plane - Part1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Projective Plane - Part2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Thue''s Theorem - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Weierstrass Normal Form - Part1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Weierstrass Normal Form - Part2 - Daniel Rogalski (MIT)

    Seminar in Geometry - A Review on Differentiation - Emma Carberry (MIT)

    Seminar in Geometry - Bernstein's Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Complete Minimal Surfaces I - Emma Carberry (MIT)

    Seminar in Geometry - Complete Minimal Surfaces II - Emma Carberry (MIT)

    Seminar in Geometry - Curves - Emma Carberry (MIT)

    Seminar in Geometry - First Fundamental Form - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map I: Background and Definition - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map II: Geometric Interpretation - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map III: Local Coordinates - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Maps and Minimal Surfaces - Emma Carberry (MIT)

    Seminar in Geometry - Implicit Function Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Introduction - Emma Carberry (MIT)

    Seminar in Geometry - Introduction to Minimal Surfaces I - Emma Carberry (MIT)

    Seminar in Geometry - Introduction to Minimal Surfaces II - Emma Carberry (MIT)

    Seminar in Geometry - Inverse Function Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Isothermal Parameters - Emma Carberry (MIT)

    Seminar in Geometry - Manifolds and Geodesics I - Emma Carberry (MIT)

    Seminar in Geometry - Manifolds and Geodesics II - Emma Carberry (MIT)

    Seminar in Geometry - Review on Complex Analysis I - Emma Carberry (MIT)

    Seminar in Geometry - Review on Complex Analysis II - Emma Carberry (MIT)

    Seminar in Geometry - Weierstrass-Enneper Representations - Emma Carberry (MIT)

    Simplicity Theory 1 The Basic Setting: Universal Domains - Itay Ben-Yaacov (MIT)

    Simplicity Theory 10 Supersimplicity; Lascar Inequalities; Stability - Itay Ben-Yaacov (MIT)

    Simplicity Theory 11 Stable Theories with a Generic Automorphism - Itay Ben-Yaacov (MIT)

    Simplicity Theory 12 Groups: Stratified Ranks, Generic Elements and Types; Connected Components, Stabilisers - Itay Ben-Yaacov (MIT)

    Simplicity Theory 13 Lovely Pairs - Itay Ben-Yaacov (MIT)

    Simplicity Theory 2 Extraction of Indiscernible Sequences(Taught by David K. Milovich) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 3 Dividing and its Basic Properties - Itay Ben-Yaacov (MIT)

    Simplicity Theory 4 Simplicity; Statement of the Properties of Independence; Morley Sequences; Proof of Symmetry and Transitivity from Extension - Itay Ben-Yaacov (MIT)

    Simplicity Theory 5 Thickness; Total D-rank and Extension - Itay Ben-Yaacov (MIT)

    Simplicity Theory 6 Lascar Strong Types and the Independence Theorem(Partially taught by Christina Goddard) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 7 Examples: Hilbert Spaces, Hyperimaginary Sorts(Taught by Josh Nichols-Barrer) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 8 Generically Transitive Relations; Amalgamation Bases, Parallelism and Canonical Bases - Itay Ben-Yaacov (MIT)

    Simplicity Theory 9 Characterisation of Simplicity and Non-dividing in Terms of Abstract Notion of Independence(Taught by Cameron Freer) - Itay Ben-Yaacov (MIT)

    Simulation of Tidal Fields around a Huge Floating Marina Using a Multi-level Method - Sung Youn Boo (한국해군사관학교)

    Singularities of toric varieties I - Mircea Mustata (University of Michigan)

    Stochastic Calculus - 1 - Jonathan Goodman (New York University)

    Stochastic Calculus - 2 - Jonathan Goodman (New York University)

    Stochastic Calculus - 3 - Jonathan Goodman (New York University)

    Stochastic Calculus - 4 - Jonathan Goodman (New York University)

    Stochastic Calculus - 5 - Jonathan Goodman (New York University)

    Stochastic Calculus - 6 - Jonathan Goodman (New York University)

    Stochastic Calculus - 7 - Jonathan Goodman (New York University)

    Stochastic Calculus - 8 - Jonathan Goodman (New York University)

    String Duality and Localization - Kefeng Liu (UCLA)

    The Halo Model of Large Scale Structure - Ravi Sheth (Pittsburg Univ. /Univ. of Pennsylvania)

    Topics in Combinatorial Optimization 1 Non-Bipartite Matching: Tutte-Berge Formula, Gallai-Edmonds Decomposition, Blossoms - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 10 Matroids: Representability, Greedy Algorithm, Matroid Polytope - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 11 Matroid Intersection - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 12 Matroid Intersection, Matroid Union, Shannon Switching Game - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 13 Matroid Intersection Polytope, Matroid Union - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 14 Matroid Union, Packing and Covering with Spanning Trees, Strong Basis Exchange Properties - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 15 Matroid Matching: Examples, Complexity, Lovasz's Minmax Relation for Linear Matroids - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 16 Jump Systems: Definitions, Examples, Operations, Optimization, and Membership - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 17 Jump Systems: Membership (cont.) - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 18 Graph Orientations, Directed Cuts (Lucchesi-Younger Theorem), Submodular Flows - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 19 Submodular Flows: Examples, Edmonds-Giles Theorem, Reduction to Matroid Intersection in Special Cases - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 2 Non-Bipartite Matching: Edmonds' Cardinality Algorithm and Proofs of Tutte-Berge Formulas and Gallai-Edmonds Decomposition - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 20 Splitting Off; $k$-Connectivity Orientations and Augmentations - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 21 Proof of Splitting-Off; Submodular Function Minimization - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 22 Multiflow and Disjoint Path Problems; Two-Commodity Flows - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 23 The Okamura-Seymour Theorem; The Wagner-Weihe Algorithm - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 3 Cubic Graphs and Matchings, Factor-Critical Graphs, Ear Decompositions - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 4 The Matching Polytope, Total Dual Integrality, and Hilbert Bases - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 5 Proof of the Bessy-Thomasse Result; The Cyclic Stable Set Polytope - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 6 Partitioning Digraphs by Paths and Covering them by Cycles; Gallai-Milgram and Bessy-Thomasse Theorems; Cyclic Orderings - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 7 Posets and Dilworth Theorem; Deduce Konig's Theorem for Bipartite Matchings; Weighted Posets and the Chain and Antichain Polytopes - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 8 Total Dual Integrality, Totally Unimodularity; Matching Polytope and the Cunningham-Marsh Formula Showing TDI - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 9 Matroids: Defs, Dual, Minor, Representability - Michel Goemans (MIT)

    Topology of Large Scale Structure - Changbom Park (Korea Institute for Advanced Study)

    Toric resolution of singularities - Mircea Mustata (University of Michigan)

    거제 고현만 주변해역의 지형 및 해안선 변화 특성 - 김종규, 김명원, 이문옥, 이연규 (여수대학교 해양공학과)

    경사면을 갖는 월파형 구조물 주위의 비선형성 자유표면류의 수치 시뮬레이션 - 박종천, 박동인, 이상범, 홍기용 (부산대학교 조선해양공학과, 한국해양연구원)

    국내ㆍ외 수산용의 약품의 특성과 향후 개발발향 - 박관하 (군산대학교 수산생명의학과)

    낙동강 하구역 사주 주변에서의 퇴적물질의 유입거동 해석 - 김경회, 이인철 (부경대학교 해양공학과)

    넙치에서 분리된 스쿠티카충 Miamiensis avidus, Pseudocohnilembus persalinus, P. hargisi의 동정과 넙치에의 병원성 - 송준영 (여수대학교 수산생명의학과)

    부소파제의 부체 개발을 위한 기초적 실험 연구 - 정동호, 김현주, 김진하, 문덕수 (한국해양연구원 해양개발시스템연구본부)

    쇄파의 유동구조 및 쇄파력에 관한 연구 - 이병성, 조효제, 구자삼, 강병윤 (한국해양대학교,부경대학교,한국중소조선기술연구소)

    수산용의약품 사용방법과 관련 제문제 - 김진우 (국립수산과학원 병리연구팀)

    수산용의약품의 제조ㆍ생산현황과 향후 전망 - 김용기 ((주)대성미생물연구소)

    스쿠티카충 Mianiensus avidus의 불활화 백신에 대한 넙치의 면역반응 - 김병관 (여수대학교 수산생명의학과)

    연속재현기법을 이용한 이안제 제두부의 수리학적 안정성 분석 - 김홍진, 류청로, 강윤구 ()

    오배자(Galla rhois) 추출물 투여에 따른 넙치의 비특이적 면역반응 및 항병력 - 최혜승 (국립수산과학원 병리연구팀)

    우리나라 돌고래쇼 및 수족관 현황 - 전돈수 (서울대공원 관리사업소)

    정치망 어구어법의 개발에 관한 연구-Ⅱ -부가중량추에 의한 모형어구의 형상 변화- - 윤일부, 이주희,권병국, 조영복, 유제범, 김성훈, 김부영 (부경대학교)

    조피볼락 양식장에서 아가미흡충 감염 역학 - 지보영 (국립수산과학원 양식환경연구소)

    철 결핍 조건에서 배양한 Edwardsiella tarda의 면역학적 특성 - 최현숙 (부경대학교 수산생명의학과)

    태풍 내습시 위험반경내 천해역의 천해설계파 산정기겁 - 유창일, 윤한삼, 이경선, 류청로 (부경대학교 해양공학과, 부경대학교 해양산업개발연구소)

    태풍 통과시 풍역변화에 따른 수위변동특성 및 호안 월류 패턴에 관한 기초적 연구 - 이경선, 김홍진, 윤한삼, 강윤구, 류청로 (부경대학교 해양공학과 , 부경대학교 해양산업개발연구소, 삼성물산(건설부문))

    한반도 연안 상괭이의 생태학적 연구 - 장창익, 박겸준 (부경대학교)

    한반도 연안에 서식하는 고래루의 음향특성과 고래관광 산업의 전망 - 이유원 (부경대학교 공학연구원 음향진동공학연구소 Bioacoustic 연구 그룹)

    한반도 연해 고래류 자원의 보존과 관리 - 양동엽, 김장근 (해양수산부 어업자원국 어업정책과, 국립수산과학원 고래연구센타)

    한반도 연해의 고래류 연구동향 - 손호선, 김장근, 안용럭, 박중연 (국립수산과학원)

    해상 부유식 마리나의 초기 설계 - 정현, 오태원, 남궁성, 김상배, 조철희 ((주)오션스페이스, 인하대학교 선박해양공학과)

    해수 순환여과사육 시스템에서 무병 사육시험 - 방종득 (국립수산과학원 동해수산연구소)

  • PC버전
    Information Center for Mathematical Sciences KAIST
    305-701 대전광역시 유성구 대학로 291 (구성동373-1)
    한국과학기술원(KAIST) 수리과학정보센터
    전화 042-350-8195~6 / 팩스 042-350-5722
    e-mail : mathnet@mathnet.or.kr
    Copyright (C) 2011. ICMS All Rights Reserved.