이전페이지 이동
2018  2017  2016  2015  2014  2013  2012  2011  2010  2009  2008  2007  2006  2005  2004  2003  2002  2001  2000  1999  1998  1997  1996  1995  1991  1990  1988  1974  1970   - 총 10715 개 -
  • 2004 년도 - 580 개-
    2004년 5-6월 가막만의 수괴분포 및 조류특성 - 이문옥, 김병국, 김종규 (여수대학교 해양공학과)

    A Review of Dark Energy - Chung Wook Kim (Korea Institute for Advanced Study)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Asymptotic Expansions of Integrals - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Complex Analysis - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - First-Order Partial Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Irregular Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Method of Stationary Phase - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Regular Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Second-Order Partial Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Separation of Variables - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Singular Points of Ordinary Differential Equations - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The Differential Operator - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The Laplace Method - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - The WKB Approximation - Hung Cheng (MIT)

    Advanced Analytic Methods in Science and Engineering - Turning Point - Hung Cheng (MIT)

    Advanced Calculus for Engineers - Analytic Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Boundary Value Problems for Nonhomogeneous PDEs - John Bush (MIT)

    Advanced Calculus for Engineers - Branch Points and Branch Cuts - John Bush (MIT)

    Advanced Calculus for Engineers - Cauchy's Formula, Properties of Analytic Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Complete Fourier Series - John Bush (MIT)

    Advanced Calculus for Engineers - Complex Integrals - John Bush (MIT)

    Advanced Calculus for Engineers - Differential Equations Satisfied by Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Eigenvalues, Eigenfunctions, Orthogonality of Eigenfunctions - John Bush (MIT)

    Advanced Calculus for Engineers - Elementary Complex Functions, Part 1 - John Bush (MIT)

    Advanced Calculus for Engineers - Elementary Complex Functions, Part 2 - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case I - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case II - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case III - John Bush (MIT)

    Advanced Calculus for Engineers - Evaluation of Real Definite Integrals, Case IV - John Bush (MIT)

    Advanced Calculus for Engineers - Fourier Series - John Bush (MIT)

    Advanced Calculus for Engineers - Fourier Sine and Cosine Series - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method (cont.) and a particular type of ODE - John Bush (MIT)

    Advanced Calculus for Engineers - Frobenius Method - Examples - John Bush (MIT)

    Advanced Calculus for Engineers - Introduction to Boundary-Value Problems - John Bush (MIT)

    Advanced Calculus for Engineers - Laurent Series (cont.) - John Bush (MIT)

    Advanced Calculus for Engineers - Modified Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Number Systems and Algebra of Complex Numbers - John Bush (MIT)

    Advanced Calculus for Engineers - Ordinary Differential Equations - John Bush (MIT)

    Advanced Calculus for Engineers - Properties of Bessel Functions - John Bush (MIT)

    Advanced Calculus for Engineers - Properties of Laurent Series, Singularities - John Bush (MIT)

    Advanced Calculus for Engineers - Residue Theorem - John Bush (MIT)

    Advanced Calculus for Engineers - Review of Boundary Value Problems for Nonhomogeneous PDEs - John Bush (MIT)

    Advanced Calculus for Engineers - Series and Convergence - John Bush (MIT)

    Advanced Calculus for Engineers - Singular Points of Linear Second-order ODEs - John Bush (MIT)

    Advanced Calculus for Engineers - Singularities (cont.) - John Bush (MIT)

    Advanced Calculus for Engineers - Sturm-Liouville Problem - John Bush (MIT)

    Advanced Calculus for Engineers - Taylor Series, Laurent Series - John Bush (MIT)

    Advanced Calculus for Engineers - Theorems for Contour Integration - John Bush (MIT)

    Algebraic Topology - Chapter 2 - Allen Hatcher (Cornell University)

    Baryonic Signature in the Large-scale Clustering of SDSS Quasars - Kazuhiro Yahata (Univ. of Tokyo)

    Comparisons of extracellular products (ECPs) from Streptococcus iniae isolates using 20dimensional gel electrophoresis - 신기욱 (경상대학교)

    Complex Variables 1 Preface - Robert B. Ash (University of Illinois)

    Complex Variables 10 Solutions - Robert B. Ash (University of Illinois)

    Complex Variables 11 List of Symbols - Robert B. Ash (University of Illinois)

    Complex Variables 12 Index - Robert B. Ash (University of Illinois)

    Complex Variables 2 Table of Contents - Robert B. Ash (University of Illinois)

    Complex Variables 3 Chapter 1 Introduction - Robert B. Ash (University of Illinois)

    Complex Variables 4 Chapter 2 The Elementary Theory - Robert B. Ash (University of Illinois)

    Complex Variables 5 Chapter 3 The General Cauchy Theorem - Robert B. Ash (University of Illinois)

    Complex Variables 6 Chapter 4 Applications of the Cauchy Theory - Robert B. Ash (University of Illinois)

    Complex Variables 7 Chapter 5 Families of Analytic Functions - Robert B. Ash (University of Illinois)

    Complex Variables 8 Chapter 6 Factorization of Analytic Functions - Robert B. Ash (University of Illinois)

    Complex Variables 9 Chapter 7 The Prime Number Theorem - Robert B. Ash (University of Illinois)

    Continuous Time Finance - Lecture 1 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 10 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 2 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 3 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 4 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 5 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 6 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 7 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 8 - Robert V. Kohn (Courant Institute, New York University)

    Continuous Time Finance - Lecture 9 - Robert V. Kohn (Courant Institute, New York University)

    Differential Analysis - Cone Support and Wavefront Set - Richard Melrose (MIT)

    Differential Analysis - Continuous Functions - Richard Melrose (MIT)

    Differential Analysis - Convolution and Density - Richard Melrose (MIT)

    Differential Analysis - Differential Operators - Richard Melrose (MIT)

    Differential Analysis - Fourier Inversion - Richard Melrose (MIT)

    Differential Analysis - Hilbert Space - Richard Melrose (MIT)

    Differential Analysis - Homogeneous Distributions - Richard Melrose (MIT)

    Differential Analysis - Integration - Richard Melrose (MIT)

    Differential Analysis - Measureability of Functions - Richard Melrose (MIT)

    Differential Analysis - Measures and sigma-algebras - Richard Melrose (MIT)

    Differential Analysis - Problems - Richard Melrose (MIT)

    Differential Analysis - References - Richard Melrose (MIT)

    Differential Analysis - Sobolev Embedding - Richard Melrose (MIT)

    Differential Analysis - Solutions - Richard Melrose (MIT)

    Differential Analysis - Spectral Theorem - Richard Melrose (MIT)

    Differential Analysis - Tempered Distributions - Richard Melrose (MIT)

    Differential Analysis - Test Functions - Richard Melrose (MIT)

    Differential Analysis-01.Examples of Harmonic Functions - Jeff Viaclovsky (MIT)

    Differential Analysis-02.Harmonic Functions and Mean Value Theorem - Jeff Viaclovsky (MIT)

    Differential Analysis-03.Definition of Green's Function for General Domains - Jeff Viaclovsky (MIT)

    Differential Analysis-04.Weak Solutions - Jeff Viaclovsky (MIT)

    Differential Analysis-05.A Removable Singularity Theorem - Jeff Viaclovsky (MIT)

    Differential Analysis-06.Kelvin Transform I: Direct Computation - Jeff Viaclovsky (MIT)

    Differential Analysis-07.Weak Maximum Princple for Linear Elliptic Operators - Jeff Viaclovsky (MIT)

    Differential Analysis-08.Quasilinear Equations (Minimal Surface Equation) - Jeff Viaclovsky (MIT)

    Differential Analysis-09.If Delta u in L^{infty}, then u in C^{1,alpha}, any 0 < alpha < 1 - Jeff Viaclovsky (MIT)

    Differential Analysis-10.If Delta u in C^{alpha}, alpha > 0, then u in C^{2} - Jeff Viaclovsky (MIT)

    Differential Analysis-11.Interior C^{2,alpha} Estimate for Newtonian Potential - Jeff Viaclovsky (MIT)

    Differential Analysis-12.Schwartz Reflection Reviewed - Jeff Viaclovsky (MIT)

    Differential Analysis-13.Global C^{2,alpha} Solution of Poisson's Equation Delta u = f in C^{alpha}, for C^{2,alpha} Boundary Values in Balls - Jeff Viaclovsky (MIT)

    Differential Analysis-14.Interior Schauder Estimate - Jeff Viaclovsky (MIT)

    Differential Analysis-15.Global Schauder Estimate - Jeff Viaclovsky (MIT)

    Differential Analysis-16.Continuity Method - Jeff Viaclovsky (MIT)

    Differential Analysis-17.Elliptic Regularity: If f and Coefficients of L in C^{k,alpha}, Lu = f, then u in C^{k+2,alpha} - Jeff Viaclovsky (MIT)

    Differential Analysis-18.C^{k,alpha} Regularity up to the Boundary - Jeff Viaclovsky (MIT)

    Differential Analysis-19.Sobolev Imbedding Theorem p < n - Jeff Viaclovsky (MIT)

    Differential Analysis-20.Sobolev Imbedding for p > n, H?lder Continuity - Jeff Viaclovsky (MIT)

    Differential Analysis-21.Characterization of W^{1,p} in Terms of Difference Quotients (cont.) - Jeff Viaclovsky (MIT)

    Differential Analysis-22.Interior W^{k+2,2} Estimates for Solutions of Lu = f in W^{k,2} - Jeff Viaclovsky (MIT)

    Differential Analysis-23.Weak L^2 Maximum Principle - Jeff Viaclovsky (MIT)

    Differential Analysis-24.Cube Decomposition - Jeff Viaclovsky (MIT)

    Differential Analysis-25.W^{2,p} Estimate for N.P., 1 < p < infty - Jeff Viaclovsky (MIT)

    Edwardsiella tarda 감염에 대한 계란 난황항체의 효과 - 김영대 (여수대학교 수산생명의학과)

    Elliptic functions - Veeravalli Varadarajan (UCLA)

    Error-correcting codes, finite fields, algebraic curves - Lecture 1 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 10 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 11 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 12 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 13 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 14 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 15 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 16 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 17 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 18 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 19 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 2 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 20 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 21 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 22 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 23 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 24 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 25 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 3 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 4 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 5 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 6 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 7 - Paul Garrett (University of Minnesota)

    Error-correcting codes, finite fields, algebraic curves - Lecture 8 - Paul Garrett (University of Minnesota)

    Fluid dynamics II - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 1 - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 2 - Stephen Childress (New York University)

    Fluid dynamics of animal locomotion - Lecture 3 - Stephen Childress (New York University)

    Formation of Galaxies in Clusters - Myung Gyoon Lee (Seoul National Univ.)

    Fourier Analysis - Approximation - Richard Melrose (MIT)

    Fourier Analysis - Bessel''s Inequality - Richard Melrose (MIT)

    Fourier Analysis - Bounded Operators - Richard Melrose (MIT)

    Fourier Analysis - Chebyshev''s Inequality - Richard Melrose (MIT)

    Fourier Analysis - Compact Operators - Richard Melrose (MIT)

    Fourier Analysis - Completeness - Richard Melrose (MIT)

    Fourier Analysis - Completeness of Eigenfunctions - Richard Melrose (MIT)

    Fourier Analysis - Convergence of Fourier Series - Richard Melrose (MIT)

    Fourier Analysis - Fatou''s Lemma - Richard Melrose (MIT)

    Fourier Analysis - Fourier Transform - Richard Melrose (MIT)

    Fourier Analysis - Harmonic Oscillator - Richard Melrose (MIT)

    Fourier Analysis - Hilbert-Schmidt Operators - Richard Melrose (MIT)

    Fourier Analysis - Integrable Functions - Richard Melrose (MIT)

    Fourier Analysis - Introduction - Richard Melrose (MIT)

    Fourier Analysis - Law of Large Numbers - Richard Melrose (MIT)

    Fourier Analysis - Linearity - Richard Melrose (MIT)

    Fourier Analysis - Measurable Functions - Richard Melrose (MIT)

    Fourier Analysis - Measures - Richard Melrose (MIT)

    Fourier Analysis - Riesz Representation Theorem - Richard Melrose (MIT)

    Fourier Analysis - Schwartz Functions - Richard Melrose (MIT)

    Fourier Analysis - Sobolev Spaces - Richard Melrose (MIT)

    Fourier Analysis - Spectral Theorem - Richard Melrose (MIT)

    Fourier Analysis - The Integral - Richard Melrose (MIT)

    Fourier Analysis - Wave Equation - Richard Melrose (MIT)

    Galaxies Properties in the Sloan Digital Sky Survey - Mariangela Bernardi (Carnegie Mellon University)

    Geometric Aspects of the Moduli Space of Riemann Surfaces - Kefeng Liu (UCLA)

    Geometric Modelling - Lecture 1 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 10 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 11 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 12 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 13 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 14 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 15 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 16 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 17 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 18 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 19 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 20 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 21 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 22, 23 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 24 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 25 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 26 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 27 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 28 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 29 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 29_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 3 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 30 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 31 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 32 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 33 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 33_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 34 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 34_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 35 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 35_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 36 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 36_2 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 37 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 38 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 4 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 5 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 6 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 7 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 8 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometric Modelling - Lecture 9 - David E. Finn (Rose-Hulman Institute of Technology)

    Geometry of Manifolds 1 Manifolds: Definitions and Examples (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 10-11 Sard's Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 12 Stratified Spaces (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 13 Fiber Bundles (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 14 Whitney's Embedding Theorem, Medium Version (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 15 A Brief Introduction to Linear Analysis: Basic Definitions; A Brief Introduction to Linear Analysis: Compact Operators (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 16-17 A Brief Introduction to Linear Analysis: Fredholm Operators (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 18-19 Smale's Sard Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 2 Smooth Maps and the Notion of Equivalence; Standard Pathologies (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 20 Parametric Transversality (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 21-22 The Strong Whitney Embedding Theorem (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 23-28 Morse Theory (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 29 Canonical Forms: The Lie Derivative (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 3 The Derivative of a Map between Vector Spaces (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 30 Canonical Forms: The Frobenious Integrability Theorem; Canonical Forms: Foliations; Characterizing a Codimension One Foliation in Terms of its Normal Vector; The Holonomy of C - Tomasz Mrowka (MIT)

    Geometry of Manifolds 31 Differential Forms and de Rham's Theorem: The Exterior Algebra (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 32 Differential Forms and de Rham's Theorem: The Poincar? Lemma and Homotopy Invariance of the de Rham Cohomology; Cech Cohomology (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 33 Refinement The Acyclicity of the Sheaf of p-forms (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 34 The Poincar? Lemma Implies the Equality of Cech Cohomology and de Rham Cohomology (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 35 The Immersion Theorem of Smale (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 4 Inverse and Implicit Function Theorems (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 5 More Examples (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 6 Vector Bundles and the Differential: New Vector Bundles from Old (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 7 Vector Bundles and the Differential: The Tangent Bundle (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 8 Connections; Partitions of Unity; The Grassmanian is Universal (PDF) - Tomasz Mrowka (MIT)

    Geometry of Manifolds 9 The Embedding Manifolds in RN (PDF) - Tomasz Mrowka (MIT)

    Gravitational Lensing with SDSS - Myeong-Gu Park (Kyungpook National Univ.)

    Highligts of Recent SDSS Sciences of JPG - Yasushi Suto (Univ. of Tokyo)

    Honors Differential Equations - Approximate Numerical Solutions - Jason Starr (MIT)

    Honors Differential Equations - Autonomous Systems and Interacting Species Models - Jason Starr (MIT)

    Honors Differential Equations - Compartment Models and Introduction to Linear Algebra - Jason Starr (MIT)

    Honors Differential Equations - Conservative Systems and Lyapunov Functions - Jason Starr (MIT)

    Honors Differential Equations - Convolution - Jason Starr (MIT)

    Honors Differential Equations - Eigenvalues, Eigenvectors and Eigenspaces - Jason Starr (MIT)

    Honors Differential Equations - Existence and Uniqueness of Solutions: Picard Iterates - Jason Starr (MIT)

    Honors Differential Equations - Existence and Uniqueness of Solutions: Uniqueness - Jason Starr (MIT)

    Honors Differential Equations - Extension of Solutions - Jason Starr (MIT)

    Honors Differential Equations - Extra Topics - Jason Starr (MIT)

    Honors Differential Equations - Extra Topics - Jason Starr (MIT)

    Honors Differential Equations - Fourier Trigonometric Series - Jason Starr (MIT)

    Honors Differential Equations - Homogeneous 2nd Order Linear ODE's with Constant Coefficients - Jason Starr (MIT)

    Honors Differential Equations - Homogeneous Linear Systems: Real Eigenvalues Case - Jason Starr (MIT)

    Honors Differential Equations - Inhomogeneous 2nd Order Linear ODE's - Jason Starr (MIT)

    Honors Differential Equations - Linear Differential Equations - Jason Starr (MIT)

    Honors Differential Equations - Modeling and Terminology - Jason Starr (MIT)

    Honors Differential Equations - Properties of the Transform - Jason Starr (MIT)

    Honors Differential Equations - Qualitative Analysis - Jason Starr (MIT)

    Honors Differential Equations - Some Instructions on Plotting Functions in MATLAB - Jason Starr (MIT)

    Honors Differential Equations - Stability of Linear and Nonlinear Autonomous Systems - Jason Starr (MIT)

    Honors Differential Equations - Supplementary Notes on Jordan Normal Form - Jason Starr (MIT)

    Honors Differential Equations - The Dirac Delta Function - Jason Starr (MIT)

    Honors Differential Equations - The Fundamental Theorem - Jason Starr (MIT)

    Honors Differential Equations - The Laplace Transform: Solving IVP’s - Jason Starr (MIT)

    Honors Differential Equations - Theory of 2nd Order Linear and Nonlinear ODE's - Jason Starr (MIT)

    Honors Differential Equations - Theory of General Linear Systems of ODE's - Jason Starr (MIT)

    Hydrodynamic Stability - Robert Krasny (University of Michigan)

    Identificaiton and EST analysis of sucuticociliate isolated from Japanese flounder paralichthys olivaceus - Shin Ichi Kitamura (여수대학교)

    Identificaiton and EST analysis of sucuticociliate isolated from Japanese flounder paralichthys olivaceus - 안경진 (국립수산과학원 생명공학연구단)

    Intersection Theory - Lecture 1 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 10 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 11 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 12 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 13 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 14 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 15 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 16 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 17 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 18 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 19 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 2 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 3 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 4 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 6 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 7 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 8 - Ravi Vakil (Stanford University)

    Intersection Theory - Lecture 9 - Ravi Vakil (Stanford University)

    Intrinsic Properties of Quasars: Testing the Standard Paradigm - David Turnshek (Univ. of Pittsburgh)

    Introduction to Computational Molecular Biology 1 Motifs and Median Strings - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 10 Suffix Arrays and BWTs - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 11 BLAST - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 12 Trees - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 13 Hidden Markov Models I - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 14 Hidden Markov Models II - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 15 Gibbs Sampling - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 16 Random Projections - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 17 Another Probabilistic Method to Phase Haplotype Data - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 18 Problem Set 1 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 19 Problem Set 2 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 2 Global Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 20 Problem Set 3 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 21 Problem Set 4 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 22 Problem Set 5 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 23 Problem Set 6 - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 24 Burrows-Wheeler Transforms in Linear Time and Linear Bits - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 25 Sampling Good Motifs with Markov Chains - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 26 Robust Clustering Techniques in Bioinformatic - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 3 Local Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 4 Spliced Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 5 More Efficient Alignment - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 6 Peptide Graphs - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 7 Exact Pattern Matching - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 8 Suffix Trees - Ross Lippert (MIT)

    Introduction to Computational Molecular Biology 9 A Review of Suffix Trees - Ross Lippert (MIT)

    Introduction to Lie Groups 1 Preface - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 2 Chapter I: Elementary Differential Geometry - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 3 Chapter II: Lie Groups and Lie Algebras 1 - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 4 Chapter II: Lie Groups and Lie Algebras 2 - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 5 Chapter I: Exercises and Further Results - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 6 Chapter II: Exercises and Further Results - Sigurdur Helgason (MIT)

    Introduction to Lie Groups 7 Solutions to Exercises - Sigurdur Helgason (MIT)

    Introduction to Numerical Methods - Bisection, Divide and Conquer - Plamen Koev (MIT)

    Introduction to Numerical Methods - Cholesky Factorization - Plamen Koev (MIT)

    Introduction to Numerical Methods - Conditioning and Stability - Plamen Koev (MIT)

    Introduction to Numerical Methods - Conjugate Gradients - Plamen Koev (MIT)

    Introduction to Numerical Methods - Eigenvalue Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Floating Point Arithmetic - Plamen Koev (MIT)

    Introduction to Numerical Methods - Gaussian Elimination - Plamen Koev (MIT)

    Introduction to Numerical Methods - Givens Rotations and Householder Reflections - Plamen Koev (MIT)

    Introduction to Numerical Methods - Introduction, Examples, Matrix-Vector and Matrix-Matrix products - Plamen Koev (MIT)

    Introduction to Numerical Methods - Iterative Algorithms, Arnoldi - Plamen Koev (MIT)

    Introduction to Numerical Methods - Lanczos Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - Lanczos, GMRES - Plamen Koev (MIT)

    Introduction to Numerical Methods - Least Squares Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Orthogonal Matrices, Norms of Matrices - Plamen Koev (MIT)

    Introduction to Numerical Methods - QR Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - QR Factorization - Plamen Koev (MIT)

    Introduction to Numerical Methods - Runge Kutta Methods - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Ordinary Differential Equations - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Stiff ODEs - I - Plamen Koev (MIT)

    Introduction to Numerical Methods - Solutions to Stiff ODEs - II - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of Givens Rotations and Backward Substitution - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of Least Squares Problems - Plamen Koev (MIT)

    Introduction to Numerical Methods - Stability of the QR Algorithm - Plamen Koev (MIT)

    Introduction to Numerical Methods - The Singular Value Decomposition - Plamen Koev (MIT)

    Introduction to Partial Differential Equations - (Generalized) Fourier Series - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - (Generalized) Fourier Series (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Convergence of Fourier Series and L^2 Theory - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Distributions (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - First-order Linear PDE''s , PDE''s from Physics - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Heat and Wave Equations in Half Space and in Intervals - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous PDE''s - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous PDE''s (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Inhomogeneous Problems - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Initial and Boundary Values Problems - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Introduction and Basic Facts about PDE''s - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Laplace''s Equation and Special Domains - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Poisson Formula - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Solution of the Heat and Wave Equations in R^n via the Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Spectral Methods - Separation of Variables - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Spectral Methods - Separation of Variables (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Tempered Distributions, Convolutions, Solutions of PDE''s by Fourier Transform (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Heat/Diffusion Equation - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Heat/Diffusion Equation (cont.) - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Inversion Formula for the Fourier Transform, Tempered Distributions, Convolutions, Solutions of PDE''s by Fourier Transform - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - The Wave Equation - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Partial Differential Equations - Types of PDE''s Distributions - Gigliola Staffilani & Andras Vasy (MIT)

    Introduction to Topology - Connected Spaces, Compact Spaces - James Munkres (MIT)

    Introduction to Topology - Countability and Separation Axioms - James Munkres (MIT)

    Introduction to Topology - Imbedding in Euclidean Space - James Munkres (MIT)

    Introduction to Topology - Imbedding in Euclidean Space (cont.) - James Munkres (MIT)

    Introduction to Topology - Logic and Foundations - James Munkres (MIT)

    Introduction to Topology - Tietze Theorem - James Munkres (MIT)

    Introduction to Topology - Tietze Theorem (cont.) - James Munkres (MIT)

    Introduction to Topology - Tychonoff Theorem, Stone-Cech Compactification - James Munkres (MIT)

    Introduction to Topology - Urysohn Lemma, Metrization - James Munkres (MIT)

    Introduction to Topology - Urysohn Lemma, Metrization (cont.) - James Munkres (MIT)

    Introduction to Topology - Well-ordered Sets, Maximum Principle - James Munkres (MIT)

    Large Scale Structure in the SDSS - Ravi Sheth (Pittsburg Univ. /Univ. of Pennsylvania)

    Lecture 3:Forced Oscillations with Damping, Destructive Resonance - Walter Lewin ()

    Lecture Notes 10 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 11 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 12 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 13 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 14 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 15 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 16 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 2 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 3 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 4 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 7 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 8 - Mohammad Ghomi (Georgia Tech)

    Lecture Notes 9 - Mohammad Ghomi (Georgia Tech)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra1 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra10 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra11 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra2 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra3 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra4 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra5 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra6 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra7 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra8 - Edwin H. Connell (University of Miami)

    LINEAR ALGEBRA - Elements of Abstract and Linear Algebra9 - Edwin H. Connell (University of Miami)

    Minimal atomic S-modules and S-algebras - Andrew Baker (University of Glasgow)

    Nonlinear Programming - 0 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 1 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 10 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 11 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 12 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 13 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 14 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 2 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 3 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 4 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 5 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 6 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 7 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 8 - Katta G. Murty (University of Michigan)

    Nonlinear Programming - 9 - Katta G. Murty (University of Michigan)

    PAST: Cosmology Using the Epoch of Reionization. - Ue-Li Pen (Canadian Institute for Theoretical Astrophysics)

    PDE in Finance - Lecture 1 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 2 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 3 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 4 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 5 - S. R. Srinivasa Varadhan (New York University)

    PDE in Finance - Lecture 6 - S. R. Srinivasa Varadhan (New York University)

    Probing the Universe with Quasar Absorption Lines - David Turnshek (Univ. of Pittsburgh)

    Random Matrix Theory and Its Applications 1 The lecture notes below are a selection of handouts that were presented and analyzed in class. Jacobian Code - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 10 Slides 2 - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 2 Why are Random Matrices Cool? - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 3 Class Handout (Chapter 8) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 4 Class Handout Addendum (Handbook of Matrix Jacobians) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 5 Class Handout (Chapter 9) - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 6 Professor Edelman's Thesis with some of the Eigenvalue Density Formulas - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 7 Multivariate Orthogonal Polynomials Handout - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 8 Report - Alan Edelman, Moe Win (MIT)

    Random Matrix Theory and Its Applications 9 Slides 1 - Alan Edelman, Moe Win (MIT)

    Semigroups and affine toric varieties - Mircea Mustata (University of Michigan)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - A Useful Homomorphism - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - A Useful Homomorphism - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Congruent Numbers and Elliptic Curves I: Koblitz - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Congruent Numbers and Elliptic Curves II: Koblitz - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Construction of an Auxiliary Polynomial - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Curves in the Projective Plane - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Examples - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Examples - Part 3 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Explicit Formulas for the Group Law - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Factorization using Elliptic Curves - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Factorization using Elliptic Curves - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Gauss''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Gauss''s Theorem - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Geometry of Cubic Curves - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Height of 2P - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Height of P + P_0 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Heights and Descent - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Integer Points on Cubics, Taxicabs - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Mordell''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Mordell''s Theorem - Part 2, Examples - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order have Integer Coordinates - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order have Integer Coordinates - Part 3, The Nagell-Lutz Theorem - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Finite Order Revisited - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Points of Order Two and Three - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Proof of the DAT, Further Developments - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Rational Points on Conics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Rational Points over Finite Fields - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Real and Complex Points on Cubics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Singular Cubics - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Taxicabs - Part 2, Thue''s Theorem - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Auxiliary Polynomial Does Not Vanish - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Auxiliary Polynomial is Small - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Discriminant, Points of Finite Order have Integer Coordinates - Part 1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Projective Plane - Part1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - The Projective Plane - Part2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Thue''s Theorem - Part 2 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Weierstrass Normal Form - Part1 - Daniel Rogalski (MIT)

    Seminar in Algebra and Number Theory: Rational Points on Elliptic Curves - Weierstrass Normal Form - Part2 - Daniel Rogalski (MIT)

    Seminar in Geometry - A Review on Differentiation - Emma Carberry (MIT)

    Seminar in Geometry - Bernstein's Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Complete Minimal Surfaces I - Emma Carberry (MIT)

    Seminar in Geometry - Complete Minimal Surfaces II - Emma Carberry (MIT)

    Seminar in Geometry - Curves - Emma Carberry (MIT)

    Seminar in Geometry - First Fundamental Form - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map I: Background and Definition - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map II: Geometric Interpretation - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Map III: Local Coordinates - Emma Carberry (MIT)

    Seminar in Geometry - Gauss Maps and Minimal Surfaces - Emma Carberry (MIT)

    Seminar in Geometry - Implicit Function Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Introduction - Emma Carberry (MIT)

    Seminar in Geometry - Introduction to Minimal Surfaces I - Emma Carberry (MIT)

    Seminar in Geometry - Introduction to Minimal Surfaces II - Emma Carberry (MIT)

    Seminar in Geometry - Inverse Function Theorem - Emma Carberry (MIT)

    Seminar in Geometry - Isothermal Parameters - Emma Carberry (MIT)

    Seminar in Geometry - Manifolds and Geodesics I - Emma Carberry (MIT)

    Seminar in Geometry - Manifolds and Geodesics II - Emma Carberry (MIT)

    Seminar in Geometry - Review on Complex Analysis I - Emma Carberry (MIT)

    Seminar in Geometry - Review on Complex Analysis II - Emma Carberry (MIT)

    Seminar in Geometry - Weierstrass-Enneper Representations - Emma Carberry (MIT)

    Simplicity Theory 1 The Basic Setting: Universal Domains - Itay Ben-Yaacov (MIT)

    Simplicity Theory 10 Supersimplicity; Lascar Inequalities; Stability - Itay Ben-Yaacov (MIT)

    Simplicity Theory 11 Stable Theories with a Generic Automorphism - Itay Ben-Yaacov (MIT)

    Simplicity Theory 12 Groups: Stratified Ranks, Generic Elements and Types; Connected Components, Stabilisers - Itay Ben-Yaacov (MIT)

    Simplicity Theory 13 Lovely Pairs - Itay Ben-Yaacov (MIT)

    Simplicity Theory 2 Extraction of Indiscernible Sequences(Taught by David K. Milovich) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 3 Dividing and its Basic Properties - Itay Ben-Yaacov (MIT)

    Simplicity Theory 4 Simplicity; Statement of the Properties of Independence; Morley Sequences; Proof of Symmetry and Transitivity from Extension - Itay Ben-Yaacov (MIT)

    Simplicity Theory 5 Thickness; Total D-rank and Extension - Itay Ben-Yaacov (MIT)

    Simplicity Theory 6 Lascar Strong Types and the Independence Theorem(Partially taught by Christina Goddard) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 7 Examples: Hilbert Spaces, Hyperimaginary Sorts(Taught by Josh Nichols-Barrer) - Itay Ben-Yaacov (MIT)

    Simplicity Theory 8 Generically Transitive Relations; Amalgamation Bases, Parallelism and Canonical Bases - Itay Ben-Yaacov (MIT)

    Simplicity Theory 9 Characterisation of Simplicity and Non-dividing in Terms of Abstract Notion of Independence(Taught by Cameron Freer) - Itay Ben-Yaacov (MIT)

    Simulation of Tidal Fields around a Huge Floating Marina Using a Multi-level Method - Sung Youn Boo (한국해군사관학교)

    Singularities of toric varieties I - Mircea Mustata (University of Michigan)

    Stochastic Calculus - 1 - Jonathan Goodman (New York University)

    Stochastic Calculus - 2 - Jonathan Goodman (New York University)

    Stochastic Calculus - 3 - Jonathan Goodman (New York University)

    Stochastic Calculus - 4 - Jonathan Goodman (New York University)

    Stochastic Calculus - 5 - Jonathan Goodman (New York University)

    Stochastic Calculus - 6 - Jonathan Goodman (New York University)

    Stochastic Calculus - 7 - Jonathan Goodman (New York University)

    Stochastic Calculus - 8 - Jonathan Goodman (New York University)

    String Duality and Localization - Kefeng Liu (UCLA)

    The Halo Model of Large Scale Structure - Ravi Sheth (Pittsburg Univ. /Univ. of Pennsylvania)

    Topics in Combinatorial Optimization 1 Non-Bipartite Matching: Tutte-Berge Formula, Gallai-Edmonds Decomposition, Blossoms - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 10 Matroids: Representability, Greedy Algorithm, Matroid Polytope - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 11 Matroid Intersection - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 12 Matroid Intersection, Matroid Union, Shannon Switching Game - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 13 Matroid Intersection Polytope, Matroid Union - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 14 Matroid Union, Packing and Covering with Spanning Trees, Strong Basis Exchange Properties - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 15 Matroid Matching: Examples, Complexity, Lovasz's Minmax Relation for Linear Matroids - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 16 Jump Systems: Definitions, Examples, Operations, Optimization, and Membership - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 17 Jump Systems: Membership (cont.) - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 18 Graph Orientations, Directed Cuts (Lucchesi-Younger Theorem), Submodular Flows - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 19 Submodular Flows: Examples, Edmonds-Giles Theorem, Reduction to Matroid Intersection in Special Cases - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 2 Non-Bipartite Matching: Edmonds' Cardinality Algorithm and Proofs of Tutte-Berge Formulas and Gallai-Edmonds Decomposition - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 20 Splitting Off; $k$-Connectivity Orientations and Augmentations - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 21 Proof of Splitting-Off; Submodular Function Minimization - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 22 Multiflow and Disjoint Path Problems; Two-Commodity Flows - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 23 The Okamura-Seymour Theorem; The Wagner-Weihe Algorithm - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 3 Cubic Graphs and Matchings, Factor-Critical Graphs, Ear Decompositions - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 4 The Matching Polytope, Total Dual Integrality, and Hilbert Bases - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 5 Proof of the Bessy-Thomasse Result; The Cyclic Stable Set Polytope - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 6 Partitioning Digraphs by Paths and Covering them by Cycles; Gallai-Milgram and Bessy-Thomasse Theorems; Cyclic Orderings - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 7 Posets and Dilworth Theorem; Deduce Konig's Theorem for Bipartite Matchings; Weighted Posets and the Chain and Antichain Polytopes - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 8 Total Dual Integrality, Totally Unimodularity; Matching Polytope and the Cunningham-Marsh Formula Showing TDI - Michel Goemans (MIT)

    Topics in Combinatorial Optimization 9 Matroids: Defs, Dual, Minor, Representability - Michel Goemans (MIT)

    Topology of Large Scale Structure - Changbom Park (Korea Institute for Advanced Study)

    Toric resolution of singularities - Mircea Mustata (University of Michigan)

    거제 고현만 주변해역의 지형 및 해안선 변화 특성 - 김종규, 김명원, 이문옥, 이연규 (여수대학교 해양공학과)

    경사면을 갖는 월파형 구조물 주위의 비선형성 자유표면류의 수치 시뮬레이션 - 박종천, 박동인, 이상범, 홍기용 (부산대학교 조선해양공학과, 한국해양연구원)

    국내ㆍ외 수산용의 약품의 특성과 향후 개발발향 - 박관하 (군산대학교 수산생명의학과)

    낙동강 하구역 사주 주변에서의 퇴적물질의 유입거동 해석 - 김경회, 이인철 (부경대학교 해양공학과)

    넙치에서 분리된 스쿠티카충 Miamiensis avidus, Pseudocohnilembus persalinus, P. hargisi의 동정과 넙치에의 병원성 - 송준영 (여수대학교 수산생명의학과)

    부소파제의 부체 개발을 위한 기초적 실험 연구 - 정동호, 김현주, 김진하, 문덕수 (한국해양연구원 해양개발시스템연구본부)

    쇄파의 유동구조 및 쇄파력에 관한 연구 - 이병성, 조효제, 구자삼, 강병윤 (한국해양대학교,부경대학교,한국중소조선기술연구소)

    수산용의약품 사용방법과 관련 제문제 - 김진우 (국립수산과학원 병리연구팀)

    수산용의약품의 제조ㆍ생산현황과 향후 전망 - 김용기 ((주)대성미생물연구소)

    스쿠티카충 Mianiensus avidus의 불활화 백신에 대한 넙치의 면역반응 - 김병관 (여수대학교 수산생명의학과)

    연속재현기법을 이용한 이안제 제두부의 수리학적 안정성 분석 - 김홍진, 류청로, 강윤구 ()

    오배자(Galla rhois) 추출물 투여에 따른 넙치의 비특이적 면역반응 및 항병력 - 최혜승 (국립수산과학원 병리연구팀)

    우리나라 돌고래쇼 및 수족관 현황 - 전돈수 (서울대공원 관리사업소)

    정치망 어구어법의 개발에 관한 연구-Ⅱ -부가중량추에 의한 모형어구의 형상 변화- - 윤일부, 이주희,권병국, 조영복, 유제범, 김성훈, 김부영 (부경대학교)

    조피볼락 양식장에서 아가미흡충 감염 역학 - 지보영 (국립수산과학원 양식환경연구소)

    철 결핍 조건에서 배양한 Edwardsiella tarda의 면역학적 특성 - 최현숙 (부경대학교 수산생명의학과)

    태풍 내습시 위험반경내 천해역의 천해설계파 산정기겁 - 유창일, 윤한삼, 이경선, 류청로 (부경대학교 해양공학과, 부경대학교 해양산업개발연구소)

    태풍 통과시 풍역변화에 따른 수위변동특성 및 호안 월류 패턴에 관한 기초적 연구 - 이경선, 김홍진, 윤한삼, 강윤구, 류청로 (부경대학교 해양공학과 , 부경대학교 해양산업개발연구소, 삼성물산(건설부문))

    한반도 연안 상괭이의 생태학적 연구 - 장창익, 박겸준 (부경대학교)

    한반도 연안에 서식하는 고래루의 음향특성과 고래관광 산업의 전망 - 이유원 (부경대학교 공학연구원 음향진동공학연구소 Bioacoustic 연구 그룹)

    한반도 연해 고래류 자원의 보존과 관리 - 양동엽, 김장근 (해양수산부 어업자원국 어업정책과, 국립수산과학원 고래연구센타)

    한반도 연해의 고래류 연구동향 - 손호선, 김장근, 안용럭, 박중연 (국립수산과학원)

    해상 부유식 마리나의 초기 설계 - 정현, 오태원, 남궁성, 김상배, 조철희 ((주)오션스페이스, 인하대학교 선박해양공학과)

    해수 순환여과사육 시스템에서 무병 사육시험 - 방종득 (국립수산과학원 동해수산연구소)

  • PC버전
    Information Center for Mathematical Sciences KAIST
    34141 대전광역시 유성구 대학로 291 (구성동373-1)
    한국과학기술원(KAIST) 수리과학정보센터
    전화 042-350-8196
    e-mail : mathnet@mathnet.or.kr
    Copyright (C) 2018. ICMS All Rights Reserved.